The n-Queens Problem with Unified Notations

Rhys Goldstein

December 14, 2008

Presented here is an algorithm that, given n, finds all solutions to the famous n-queens
problem. Notably, this is done without code. Four small mathematical definitions, written
using unified notations, serve as both a formal description and an implementation of the

algorithm.

The n-queens problem requires one to place n queens on an n-by-n grid such that no two

queens share a row, column, or diagonal. Below is one of many solutions with n = 8.

0|
1 W

7 W

Taking advantage of the fact that all solutions have exactly one queen in each column, we
represent each solution as a vector of n row numbers. The solution above is represented by

the vector [0,4,7,5,2,6, 1, 3], as the first queen from the left is in row 0, the second is in

row 4, etc. We now wish to define a function named queens that takes n as an argument,
and results in a vector (of vectors) that represents all possible solutions to the n-queens
problem. Note, for example, that if n = 6, there are 4 solutions. The equation below gives

the result of queens (6).

1,3,5,0,2,4
2,5,1,4,0,3
3,0,4,1,5,2

[
queens (6) = {
[4,2,0,5,3,1

]
]
]
]

We may define queens using another function named complete, which finds all solutions
to the n-queens problem under the constraint that the leftmost queens have certain fixed

positions. With an argument value of | |, none of the queens are fixed.
queens (n) := complete (|])

Observe the diagram below, noting that n = 8.

7 W

In this example the leftmost four queens are fixed, and their positions are represented by

the vector [2, 6, 1, 7]. Under this constraint, there are two possible solutions: one completed

by placing queens on the X’s in the remaining columns, and the other completed using the
O’s. The function complete, given [2,6,1,7] as an argument, yields both solutions as

shown below.

2.6,1,7,4,0,3,5
complete([276’1,7])zl[7 L, 04, 0,0,]]

2,6,1,7,5,3,0,4]

To define complete in general, we let the argument () be the vector of queens on the left
with fixed positions. We know that no two queens in () share a column, and assume that
there are no shared rows or diagonals either. This assumption holds true at least for the

initial value (@) = []), which appeared in the definition of queens.

There are now two cases to consider. If the length of the vector () is n, then all n queens
have fixed positions. The result of complete is then a vector containing the sole solution,
which is (). As for the other case, in which the length of () is less then n, we use a new
function named check. If invoked with the expression check (i), this function fixes a queen
at row ¢ in the leftmost of the remaining columns, and yields all solutions under this tighter
contraint. We invoke the function with the expression check o ..n, however, which applies
check to every row in the leftmost remaining column. The operator || merely concatenates
the results.

< queens >

complete (Q) := < #@=n =0)

#0Q <n — ||(check o ..n)

Now we must define check as a function of the row number :. It is tempting to simply
add this new queen to the list of queens with fixed positions. This could be achieved
by appending i to (), and the result (Q) || [¢{]) would then serve as a new argument to the
function complete. We must remember, however, that when defining complete we made
the assumption that there were no shared rows or diagonals in (). In order to maintain this
property, we must consider the case in which there is a conflict between the new queen and
any of the existing ones. This case, indicated by the boolean con flict, means that there are

definitely no valid solutions to the n-queens problem contrained by @ || [7].

< ...;complete >

check (i) = (conflict — —])

—con flict — complete (Q || [i])

Below we have n = 8, Q = [2,6,1,7], and i = 3. To determine the value of con flict,
we need need to check whether we may place in a queen on the square marked by the
question mark. This square is in row ¢ of the leftmost remaining column. In this case we

may not place a queen there, as two of the existing queens share a diagonal with that square.

7 w

In general, if any queen in () shares a row with the new queen, then the boolean vector
() = 7 has at least one truthful value. If any existing queen shares a diagonal with the new
one, then |Q — i| = (#Q — ..#Q) has at least one truthful value. Combining and reducing
these vectors, we obtain the following definition of con flict.

& ...;check >
conflict .=V ((Q =1)V (|Q — 1| = (#Q — ..#Q)))

This completes the implementation of an algorithm that finds all solutions to the n-queens
problem. Despite the absence of code, it is fair to refer to the mathematical formulas as

an “implementation”, for with the aid of an intepreter or compiler the formulas could be

evaluated by a computer. A user could input queens (8), and obtain as an output all 92

solutions with n = &.

One advantage to using unified notations instead of code is the fact that one can manipulate
parts of the implementation without introducing a new set of notations. As a demonstration,

we will evaluate con flict manually using the values of n, (), and ¢ given earlier.

conflict ..
S V(Q=i) V(10— il = (#Q - . #Q))) ..
=V (([2 6,1,7]—3)\/(|[2 6,1,7—=3=(4—-.4)))...
=V(L, L, L, L]V ([-1,3,-2,4]|=(4-1[0,1,2,3]))) ...
=V ([L, L, L, 1]V (1,3, B 4] [4,3,2,1])) ..
=V (L, L, L, V[LT,T,1])...
=VI[L,T,T,1]...
=T

One might imagine that the use of code would yield a more compact implementation. But
this mathematical version is surprisingly compact itself, as one observes once the surround-

ing text and images are omitted.

queens (n) := complete ([])

[#Q=n —[Q]
complete (Q) := < #Q <n — || (check o .n))
heck (i) = conflict —]
Checr (1) == —conflict — complete (Q ||[7])

conflict := Vv ((Q =1) vV (IQ —i| = (#Q — . #Q)))

